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Figure 1: Visualizations of A2D2 data. From left: semantic segmentation, 3D bounding boxes, dense point cloud from SLAM,
single frame point cloud overlaid on corresponding camera image.

Abstract

Research in machine learning, mobile robotics, and au-
tonomous driving is accelerated by the availability of high
quality annotated data. To this end, we release the Audi
Autonomous Driving Dataset (A2D2). Our dataset con-
sists of simultaneously recorded images and 3D point clouds,
together with 3D bounding boxes, semantic segmentation, in-
stance segmentation, and data extracted from the automotive
bus. Our sensor suite consists of six cameras and five Li-
DAR units, providing full 360◦ coverage. The recorded data
is time synchronized and mutually registered. Annotations
are for non-sequential frames: 41,277 frames with semantic
segmentation image and point cloud labels, of which 12,497
frames also have 3D bounding box annotations for objects
within the field of view of the front camera. In addition, we
provide 392,556 sequential frames of unannotated sensor
data for recordings in three cities in the south of Germany.
These sequences contain several loops. Faces and vehicle
number plates are blurred due to GDPR legislation and to
preserve anonymity. A2D2 is made available under the CC
BY-ND 4.0 license, permitting commercial use subject to
the terms of the license. Data and further information are
available at http://www.a2d2.audi.

∗Work done while at Audi AG

1. Introduction
Access to high quality data has proven crucial to the de-

velopment of autonomous driving systems. In this paper
we present the Audi Autonomous Driving Dataset (A2D2)
which provides camera, LiDAR, and vehicle bus data, allow-
ing developers and researchers to explore multimodal sensor
fusion approaches.

While some datasets such as KITTI [1] and ApolloScape
[2] also provide both LiDAR and camera data, more re-
cent datasets [3, 4] have put an emphasis on providing
full surround sensor coverage. We believe this is impor-
tant for further advances in autonomous driving, and there-
fore have released A2D2 with full surround camera and
LiDAR data. We also include vehicle bus data, which pro-
vides additional information about car state (e.g. transla-
tional/rotational speed and acceleration, steering wheel an-
gle, throttle, brake, etc.).

Vast majority of publicly available datasets are released
under licenses permitting research-only use. Whilst we un-
derstand the reasons for this, we want to push progress in
the field by publishing A2D2 under the less restrictive CC
BY-ND 4.0 license, which allows commercial use (subject to
the terms of the license). We hope this will help researchers,
particularly those working within commercial enterprises.

By releasing A2D2, we seek to

a) catalyse research in machine learning and robotics, es-
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pecially research related to autonomous driving

b) provide a public dataset from a realistic autonomous
driving sensor suite

c) engage with the wider research community

d) contribute to startups and other commercial entities by
freely releasing data which is expensive to generate.

In summary, we release A2D2 to foster research, in keep-
ing with our ethos of promoting innovation and actively
participating in the research community.

Our main contributions are as follows:

• The setup and calibration of our Audi Q7 e-tron data
collection platform is discussed in Section 3. We con-
sider this platform to be broadly comparable to many
autonomous driving development platforms currently
in use by commercial entities.

• We provide the community with a commercial grade
driving dataset, suitable for many perception tasks. It
includes extensive vehicle bus data, which has hitherto
been lacking in public datasets.

• We evaluate the performance of a semantic segmenta-
tion convolutional network on A2D2 in Section 4.

• We release A2D2 under the commercial-friendly CC
BY-ND 4.0 license.

2. Related Work
This section provides a brief survey of datasets relevant

to the development of autonomous driving systems. We
focus on the most comparable recent datasets, which strongly
emphasize multimodal sensor data. We present them in
chronological order.

2.1. Datasets

The KITTI [1] dataset was a pioneer in the field which,
together with its associated benchmarks [5], has been highly
influential. The data collection vehicle was equipped with
with four video cameras (two color, two grayscale), a 3D
laser scanner, and a GPS/IMU inertial navigation system.
Several challenges were published on tasks such as 2D and
3D object detection, SLAM, depth prediction, tracking, and
optical flow.

As the viability of image semantic segmentation solutions
for autonomous driving increased, so too did the need for
relevant semantically labeled images. The Cityscapes dataset
[6] sought to address this. The data were collected in 50
cities in Germany, and recorded in dense urban traffic. The
scenes were captured using stereo-pair color cameras and
were annotated semantically on both instance and pixel level.

Cityscapes contains 5000 fine labeled images spanning over
30 classes.

The Mapillary Vistas dataset [7] also provides semantic
segmentation labels for urban, rural, and off-road scenes.
The dataset contains 25,000 densely annotated street-level
images from locations around the world. The dataset is het-
erogeneous in that the capture devices span mobile phones,
tablets, and assorted cameras.

ApolloScape [2] is a large dataset consisting of over
140,000 video frames from various locations in China under
varying weather conditions. Pixel-wise semantic annota-
tion of the recorded data is provided in 2D, with point-wise
semantic annotation in 3D for 28 classes. In addition, the
dataset contains lane marking annotations in 2D. To our
knowledge, ApolloScape is the largest publicly available
semantic segmentation dataset for autonomous driving ap-
plications.

The Berkeley Deep Drive dataset (BDD-100k) [8] has
a stronger emphasis on 2D bounding boxes but also con-
tains pixel-wise segmentation annotations for 10,000 im-
ages. BDD-100K contains 100,000 images with 2D bound-
ing boxes as well as street lanes, markings, and traffic light
color identification.

Several semantic point cloud datasets have also been
made available, e.g. [9, 10, 11, 12, 13]. However, Se-
manticKITTI [14] is significantly larger than its predeces-
sors. It also has the advantage of being based on the already
widely-used KITTI dataset, providing point-wise semantic
annotations of all 22 pointclouds of the KITTI Vision Odom-
etry Benchmark. This corresponds to 43,000 separately
annotated scans.

KITTI highlighted the importance of multi-modal sensor
setups for autonomous driving, and the latest datasets have
put a strong emphasis on this aspect. nuScenes [3] is a
recently released dataset which is particularly notable for its
sensor multimodality. It consists of camera images, LiDAR
point clouds, and radar data, together with 3D bounding box
annotations. It was collected during the day and night under
clear weather conditions.

The Lyft Level 5 AV Dataset [15] has camera and LiDAR
data in the nuScene data format. It has a strong emphasis on
3D bounding box detection and tracking.

Most recently, the Waymo Open Dataset [4] was released
with 12 million 3D bounding box annotations on LiDAR
point clouds and 1.2 million 2D bounding box annotations
on camera frames. In total it consists of 1000 20-second
sequences in urban and suburban scenarios, under various
weather and lighting conditions.

2.2. Comparison

We compare A2D2 to the other multimodal datasets listed
in Table 1. All contain LiDAR point clouds and images
from several cameras. Most focus on object detection for
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KITTI Apollo Scape nuScenes Lyft Level 5 Waymo OD A2D2

Cameras 4 (0.7MP) 2 (9.2MP) 6 (1.4MP) 7 (2.1MP)? 3 (2.5MP) + 2
(1.7MP) 6 (2.3MP)

LiDAR
sensors 1 (64 channel) 2 (N/A) 1 (32 channel) 1 + 2 aux. (40

channel)
1 + 4 aux. (64
channel†)

5 (16 channel)

Vehicle
bus data GPS+IMU‡ GPS+IMU‡ - - velocity, angular

velocity

GPS, IMU, steer-
ing angle, brake,
throttle, odome-
try, velocity, pitch,
roll

Location urban, one city urban, various
cities urban, two cities urban urban

urban, highways,
country roads,
three cities

Hours day day day, night day day, night day
Weather sunny, cloudy various weather various weather varous weather various weather various weather

Objects 3D pixel, 3D seman-
tic points 3D 3D 3D, 2D 3D, pixel

Last
updated 2015 2018 2019 2019 2019 2020

Table 1: Comparison of datasets with multimodal sensor approach. ?The following alternative setup was also used: 6
(1224× 1024) + 1 (2048× 864). †Number of channels refers to main LiDAR. ‡Provided by additional sensors

autonomous shuttle fleets operating in predefined urban sce-
narios.

A2D2 similarly contains images and point clouds, but,
in addition, it provides extensive vehicle bus data includ-
ing steering wheel angle, throttle, and braking. This allows
A2D2 to be used for more fields of research in autonomous
driving, e.g. end-to-end learning as in [16] and [17, 18] (syn-
thetic data). To the best of our knowledge other multimodal
datasets do not provide such data.

Since other datasets focus on object detection, their Li-
DAR setups are configured so that the highest detected points
are slightly above the recording vehicle. In contrast, the scan
patterns of the five LiDAR setup (80 channels in total) used
in A2D2 are optimized for uniform distribution and maxi-
mum overlap with the camera frames. As a result they also
cover a large area above the vehicle and capture large static
objects such as high buildings. This makes the dataset par-
ticularly relevant for SLAM and 3D map generation, e.g.
[19, 20, 21].

A2D2 complements current multimodal datasets by hav-
ing a stronger emphasis on semantic segmentation and vehi-
cle bus data. Furthermore, the unannotated sequences focus
on longer consecutive LiDAR and camera data suitable for
self-supervised approaches.

3. Dataset
A2D2 includes data recorded on highways, country roads,

and cities in the south of Germany. The data were recorded
under cloudy, rainy, and sunny weather conditions. We
provide semantic segmentation labels, instance segmentation
labels, and 3D bounding boxes for non-sequential frames:
41,277 images have semantic and instance segmentation
labels for 38 categories. All images have corresponding

LiDAR point clouds, of which 12,497 are annotated with 3D
bounding boxes within the field of view of the front-center
camera. We also provide unannotated sequence data.

3.1. Data Collection Platform

We collected data using an Audi Q7 e-tron equipped with
six cameras and five Velodyne VLP-16 sensors (see Tables 2,
3, and 4). In addition to the camera and LiDAR data from our
sensor suite, we also recorded the vehicle bus data. Figure
2(a) shows the vehicle used for data collection. The sensor
configuration and the frame of reference g are visualized in
Figure 2(b). The y-axis passes through the highest points on
the rear wheel arches. The poses of the camera and LiDAR
sensors are given with respect to this frame of reference.

Sensor Location Type
Camera Front-center Sekonix SF3325-100
Camera Front-left Sekonix SF3324-100
Camera Front-right Sekonix SF3324-100
Camera Side-left Sekonix SF3324-100
Camera Side-right Sekonix SF3324-100
Camera Rear-center Sekonix SF3324-100

LiDAR Front-center Velodyne VLP-16
LiDAR Front-left Velodyne VLP-16
LiDAR Front-right Velodyne VLP-16
LiDAR Rear-left Velodyne VLP-16
LiDAR Rear-right Velodyne VLP-16

Table 2: Sensor suite

3.1.1 Sensor Setup

We chose to mount the sensors on the roof of the vehicle
with the aim of obtaining 360◦ environmental coverage, and
to be symmetric with respect to the x-z-plane. The number
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(a) Audi Q7 e-tron (b) Global reference frame
(c) LiDAR blind spots (shaded). Sensor placement is shown
in yellow (camera) and green (LiDAR)

Figure 2

SF3225-100 SF3224-100
Horizontal FOV 60◦ 120◦

Vertical FOV 38◦ 73◦

Diagonal FOV 70◦ 146◦

Sensor Onsemi AR0231 Onsemi AR0231
Resolution 1928 x 1208 (2MP) 1928 x 1208 (2MP)

Colour Filter Array RCCB RCCB

Table 3: Camera specifications

VLP-16
Azimuthal FOV 360◦

Vertical FOV 30◦ (+15◦ to -15◦)
Channels 16

Vertical resolution 2◦

Frequency 5-20Hz (10Hz used for A2D2)
Range up to 100m

Rate up to ∼300,000 points/second

Table 4: LiDAR specifications [22]

of sensors was limited by data recording bandwidth. Three
fisheye (120◦ horizontal FOV) cameras provide views to the
left, right, and rear of the vehicle. More emphasis was put on
the front view which was covered with three cameras: a pair
of fisheye cameras mounted on the front-left and front-right
of the roof, and a rectilinear (60◦ horizontal FOV) camera
mounted between them to provide a more detailed and less
distorted view. LiDAR sensors were placed at each corner
of the setup and above the front center camera. Figure 2(c)
shows the described sensor placement.

After fixing the sensor locations, the camera and LiDAR
sensor orientations were optimized manually by visualizing
the covered 3D region in CAD software. The goal of this
process was to minimize the blind spot around the vehicle
while maximizing camera and LiDAR field of view overlap.
Figure 2(c) depicts the blind spot of the LiDAR sensors,
evaluated at the ground plane. Outside the LiDAR blind
spot, the fields of view of the cameras and the LiDAR sensors
largely overlap (over 90 %). This is demonstrated visually
in the upper panel of Figure 3.

3.1.2 Sensor Calibration/Registration

The sensors were mounted on the vehicle as detailed in
Section 3.1.1 and measurements were made of their poses.
In-situ calibration was still required, especially to account
for error in measuring sensor angles.

Firstly, the measured pose of the front-center LiDAR
sensor with respect to the reference frame was assumed to
be accurate. Using it as a reference, all remaining sensor
poses were determined relative to this LiDAR.

Secondly, we performed LiDAR to LiDAR mapping. To
do so, LiDAR data was recorded in a static environment,
with no dynamic objects. During data collection the vehicle
was also stationary. An ICP-based registration [23] was
performed for determining the relative pose of the LiDAR
sensors with respect to each other.

Thirdly, intrinsic camera calibration was performed for
all cameras using 2D patterns (checkerboards).

Finally, the LiDAR to camera mapping was determined as
follows: Using a recording with our data recording vehicle
in motion (see Section 3.3), a large combined LiDAR point
cloud was computed using ego-motion correction based on
the bus data and then an ICP-based open-loop SLAM [24]
(see lower panel of Figure 3). Given extrinsic camera pa-
rameters and using interpolation, a depth image as seen
by the respective camera can be computed. Keeping the
measured camera positions fixed, the camera angles were
determined by optimizing for edge correspondence in the
depth and RGB camera images. The top panel of Figure 3
shows LiDAR points projected onto camera images using
the resulting mappings.

The result of the calibration is given in a configuration
file containing:

• a view, v, for each sensor as well as the global frame of
reference of the vehicle. Each view describes the pose
of a sensor with respect to the reference frame, and is
given by a tuple of three vectors so that v = (o,x,y).
The vector o ∈ R3 specifies the Cartesian coordinates
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Figure 3: Upper panel: Mapping of LiDAR points onto stitched camera images. Lower panels: colored 3D maps generated
from a 30 second sequence using an ICP-based open-loop SLAM.

(in meters) of the origin of the sensor. x,y ∈ R3

are unit vectors pointing in the direction (in Cartesian
coordinates) of the sensor’s x-axis and the y-axis. The
z-axis of the sensor completes an orthonormal basis
and thus is obtained by the cross-product z = x× y.

• the following parameters for each camera sensor:

– K ∈ R3×3 – the intrinsic camera matrix of the
original (distorted) camera image

– M ∈ R3×3 – the intrinsic camera matrix of the
undistorted camera image

– d ∈ R4 – distortion parameters of the original
(distorted) camera image

– r ∈ N2 – resolution (columns, rows) of undis-
torted as well as original camera image

– L ∈ {Fisheye,Wide-angle} – type of lens.

3.1.3 Vehicle Bus Data

In addition to camera and LiDAR data, the vehicle bus
data were recorded. It is stored in a json-file, which con-
tains the bus signals themselves as well as the corresponding
timestamps and units. The signals comprise, e.g., accelera-
tion, (angular) velocity, and GPS coordinates,brake pressure,
pitch and roll angles; see Figure 4.

By including vehicle bus data we not only allow A2D2
to be used for imitation (end-to-end) learning research, but
also enable reinforcement learning approaches as described
in [25].

3.2. Anonymization

Due to recent privacy laws and regulations we utilized
a state-of-the-art semantic segmentation network to blur
license plates and heads of pedestrians. This was done for
both annotated and un-annotated data (more than 400,000
images).

3.3. Unlabelled Sequence Data

We recorded three urban sequences in Gaimersheim, Mu-
nich, and Ingolstadt. These sequences, containing closed
loops, are provided as 392,556 unlabelled images (total from
all six cameras), together with corresponding LiDAR and
bus data. The sequences consist of 94,221, 164,823, and
133,512 images with corresponding timestamps, respectively.
As mentioned in Section 2.2, these data are useful for re-
search in end-to-end autonomous driving, depth prediction
from mono/stereo images or videos [26, 27], and SLAM.
The latter was used for computing the LiDAR-to-camera
map in Section 3.1.2, see also Figure 3.

3.4. Data Labels

3.4.1 Semantic Annotations

A2D2 includes images from different road scenarios such
as highway, country, and urban. In total, 41,277 camera
images are semantically labelled. Of these, 31,448 labels are
for front-center camera images, 1,966 for front-left, 1,797
for front-right, 1,650 for side-left, 2,722 for side-right, and
1,694 for rear-center. Each pixel is assigned to a semantic
class.

Where multiple instances of the same class of traffic par-
ticipant (pedestrian, cyclist, car, or truck) share a boundary,
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(a) GPS coordinates (b) Degree of latitude/longitude (c) Steering angle and z angular velocity

Figure 4: Three vehicle bus signals are depicted over time. In (a), the GPS signal values are projected onto a map. A
roundabout is visible in the lower right corner. This roundabout corresponds to the oscillating part of the longitude and latitude
plot (b) as well as the nearly constant part in the plot of steering angle and z angular velocity (c).

Figure 5: Multiple adjacent car instances. Starting from
the right of the above figure, cars 1, 2, and 3 must all have
different semantic classes because they share a boundary.
The next car to the left can be assigned ‘Car 1’ because it
does not share a boundary with any other ‘Car 1’ instance.

they are differentiated using subclasses such as car1, car2,
etc. As shown in Figure 5 this only applies to adjacent in-
stances. Therefore the fact that our semantic segmentation
taxonomy has classes car[1-4] does not imply that there is a
maximum of 4 cars per image.

In total, there are 38 classes in our semantic segmentation
schema. The lower panel of Figure 7 shows these classes
along with the distribution of pixels in our dataset. The
number of instances of traffic participants annotated with
semantic labels in our dataset are depicted in the upper-right
panel of Figure 7. Predictably, the traffic participant instance
counts are dominated by cars, trucks, and pedestrians.

We also provide LiDAR point clouds for 38,481 semanti-
cally labelled images. The 3D semantic labels are obtained
by mapping the 3D points to the semantic segmentation
images using the LiDAR to camera mapping described in
Section 3.1.2.

3.4.2 Instance Segmentation Annotations

We generated instance segmentation annotations from all
semantic segmentation annotations. These instance anno-
tations are available for all classes which represent traffic
participants such as pedestrians, cars, etc.

3.4.3 3D Bounding Boxes

For 12,497 of the front-camera frames with semantic
annotation, we also provide 3D bounding boxes for a variety
of vehicles, pedestrians, and other relevant objects. Figure
7 (top left) shows the full list of annotated classes, along
with the number of instances of each class in A2D2. Where
objects are partially occluded, human annotators estimated
the bounding box to the best of their ability. Examples of
this can be seen in the second panel of Figure 1.

3D bounding boxes were annotated in LiDAR space. To
do so, we first combined the point clouds from all LiDARs,
then culled them to the view frustrum of the front-center
camera. Therefore, we provide 3D bounding boxes for the
points within the field of view of the front-center camera.

LiDAR point clouds are sparse relative to images. As a
result, distant or small objects may not be represented by
(m)any points. Since the 3D bounding boxes are derived
from LiDAR point clouds, objects may be visible in images
but lack corresponding 3D bounding boxes.

Figure 6 (left) shows the distributions of the radial dis-
tances to the ego vehicle of the 3D bounding boxes in our
dataset for three classes: pedestrians, cars, and trucks. As
one may expect, trucks, being physically larger than cars and
pedestrians, have a higher optical cross section, and are thus
seen and annotated in the LiDAR point clouds to a farther
distance.

Although cars are metallic and larger than pedestrians,
Figure 6 (left) shows that the distribution of annotated cars
drops off quicker with distance than the distribution of an-
notated pedestrians. A possible explanation for this would
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Figure 7: Number of 3D bounding box instances per class, number of traffic participant instances per class (semantic
segmentation), semantic segmentation pixel counts per class. Note that “Cyclist” and “MotorBiker” stand for a person
including the corresponding vehicle.

be that the distributions of the annotations largely reflect the
real world distributions, i.e., the percentage of cars at long
range really is smaller than the percentage of pedestrians
at long range. This seems unlikely since A2D2 contains
recordings from highways and country roads, where we ex-
pect many distant cars. A more plausible explanation relies

on the fact that LiDAR visibility is not determined solely by
optical cross section, but also by occlusion, which is affected
by the size, shape, and spatial distribution of objects. Since
cars are generally on roads, they tend to be almost directly
ahead of the ego vehicle (see right panels of Figure 6). Thus
they often occlude other cars rather than pedestrians, the
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azimuthal distribution of which is more even as shown in
Figure 6 (right). This might explain why the distribution of
annotated cars falls off quicker with distance than the one
for pedestrians.

The same argument does not hold for trucks, despite
the fact that they are also mostly directly ahead the ego
vehicle (see Figure 6). They are far less common than cars in
A2D2 as depicted in the upper panels of Figure 7 (note the
logarithmic y-axes). This suggests that potential occluding
objects are usually not other trucks. That being the case,
since trucks are wider and taller than other vehicles, they are
less likely to be fully occluded so that they can be perceived
to a farther distance.

3.5. Tutorial

Since our aim is to provide a valuable resource to the
community, it is important that A2D2 be easy to use. To
this end we provide a Jupyter Notebook tutorial with the
download, which details how to access and use the dataset.

4. Experiment: Semantic Segmentation

In this section we present the results of training and eval-
uating a semantic segmentation network on A2D2. In order
to establish baseline results, our experiment follows state-
of-the-art methods [28, 29], training a fully convolutional
network to classify each pixel within an image.

For our experiments, we used 40,030 RGB images with a
resolution of 1920× 1208 pixels. We split the data into train
(28,015 images), validation (4,118), and test (7,897) sets.
The experiments were conducted for 18 classes of interest,
and an additional background class. These 19 classes were
chosen to be as similar as possible to the Cityscapes taxon-
omy, and were generated by merging similar classes in our
38-class taxonomy. Random cropping, brightness, contrast,
and flipping augmentations were applied. As is standard
practice, we use mean Intersection over Union (IoU) to eval-
uate the performance of the model.

4.1. Baseline Results

The network architecture used ResNet-101 [30] as the
encoder and the pyramid scene parsing network [31] module
as the decoder. The encoder was initialized with weights
from ImageNet pre-training. We trained the network using
stochastic gradient descent with momentum. The initial
learning rate was 0.01 and the momentum parameter was
0.9. The learning rate was decreased polynomially during
training. The feature map of the last encoder layer has spatial
dimensions 1

16 those of the input image. This model achieves
a mean IoU over the 18 foreground classes of 71.01% on the
test set, as shown in Table 5. Figure 8 shows some visual
examples of the network output.

Architecture/Training Mean IOU

Baseline (ResNet-101 + PSP-Net) 71.01%

With pre-trained weights (ResNet-50 + PSP-Net) 68.40%

Without pre-trained weights (ResNet-50 + PSP-Net) 65.31%

With anonymized images (ResNet-101 + PSP-Net) 70.94%

Table 5: Evaluation results on the test set

4.2. Usage of Pre-Trained weights

We assess the influence of ImageNet pre-training versus
random weight initialization. The network architecture is
similar to the baseline experiment, but the encoder module
is replaced by ResNet-50, and the final encoder layer spatial
dimensions are 1

8 those of the input image. The training algo-
rithm and hyperparameters are the same as for the baseline
experiments with the only exception that the initial learning
rate is 1.0× 10−4 for the network with pre-trained weights.
The mean IoU evaluation results are shown in Table 5. The
model with pre-trained weights achieves a better result.

4.3. Training With Anonymized Images

The results which we have discussed thus far apply to
models trained on images which were not anonymized.
Since legal requirements require that our dataset be
anonymized prior to public release, we investigate the effect
of anonymization on performance. To do this we trained our
network with anonymized images, where faces and vehicle
number plates were blurred. The network architecture and
experimental setup are the same as in the baseline experi-
ment, with the encoder once again initialized with ImageNet
pre-trained weights. The model achieves a mean IoU of
70.94% on the test set, which is very similar to the baseline
result, and does not immediately suggest that anonymiza-
tion has an adverse effect on the semantic segmentation task.
Table 5 shows the results of all of our experiments.

5. Conclusions and Outlook
We provide a commercially usable dataset, which in-

cludes camera, LiDAR and bus data recorded from a Audi
Q7 e-tron. The data from six cameras and five LiDAR sen-
sors are registered to a global reference frame and include
precise timestamps. Rich data is provided, in particular full
360◦ sensor coverage of the vehicle environment. We have
strived to make A2D2 as accessible and easy to use as pos-
sible (license, privacy concerns, interactive tutorial), with
the end goal of advancing state-of-the-art commercial and
academic research in computer vision, machine learning,
and autonomous driving.

We expect to continuously update A2D2 in line with
current frontiers in research. Indeed, instance segmentation
annotations were not included in the initial public release,

8



Figure 8: Visual result on test set images of different scenarios

but are now available for download. Furthermore we plan
to define benchmarks and challenges to allow researchers to
easily and fairly compare their algorithms. To this end, we
have labeled a test set of ∼10K images with semantic seg-
mentation annotations, and are currently exploring how best
to allow the community to benchmark against this ground
truth.
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